

Integrated Eligibility & Enrollment System (IEES)
Test Plan and Artifacts Report

Version: 1.0
 Last Modified: February, 2023

1 | P a g e

APPROVALS

Submitting Organization’s Approving Authority:

Signature Printed Name Date Phone Number

CMS’ Approving Authority:

Signature Printed Name Date Phone Number

2 | P a g e

REVISION HISTORY

Version Date Organization/Point of Contact Description of Changes
1.0 Baseline Version

3 | P a g e

Table of Contents

INTRODUCTION..5
OBJECTIVES ... 6

TESTING OVERVIEW ..7
GENERAL APPROACH .. 7

TESTING PHILOSOPHY ... 2

TEST STANDARDS .. 3

APPROACH TO NON-TESTABLE REQUIREMENTS ... 3

TESTING TOOLS ...4
MICROSOFT TFS .. 4

TESTING TOOLS INTEGRATION WITH TEST ACTIVITIES .. 4

TESTING PHASES ...7
UNIT TESTING ... 7

INTEGRATION TESTING ... 7

ITERATIVE FUNCTIONAL TESTING .. 8

SYSTEM TESTING .. 8

INTERFACE TESTING .. 9

REGRESSION TESTING ... 9

SECURITY TESTING ... 10

PERFORMANCE TESTING ... 11

Load Test... 12

Scalability Test .. 12

Stress Test ... 12

USABILITY TESTING .. 12

USER ACCEPTANCE TESTING .. 15

User Acceptance Execution Facilitation ... 15

Pre User Acceptance Test Execution .. 15

User Acceptance Test Execution ... 15

THE FOLLOWING ACTIVITIES ARE PERFORMED TO COORDINATE, FACILITATE, AND COMMUNICATE

THE PROGRESS OF TESTING: .. 15

DATA MIGRATION TESTING .. 16

TESTING METHODOLOGIES ..17
USABILITY LABS ... 17

AUTOMATED TESTING ... 17

LANGUAGE TESTING ... 18

BROWSER TESTING.. 18

Test Techniques and Methods.. 18

Preparation, Orientation and Kickoff .. 20

TEST DATA ...22
USER ACCEPTANCE TESTING .. 22

DATA MIGRATION TESTING .. 23

4 | P a g e

ANONYMOUS DATA FOR TESTING PURPOSES ... 23

TEST DATA REFRESH .. 23

TEST DEVELOPMENT ...25
TEST EXECUTION .. 25

TEST MONITORING ...27
DEFECT MANAGEMENT RESPONSIBILITIES ... 28

TEST STATUS MEETINGS AND REPORTING ... 29

CLOSURE EVALUATION CRITERIA .. 29

APPROACH TO CREATING TEST ENVIRONMENTS ..30
OUR TEST ENVIRONMENT MANAGEMENT PLAN .. 30

CODE MIGRATION AND TESTING THROUGH ENVIRONMENTS ... 31

ADDITIONAL TESTING RESPONSIBILITIES ..32

APPENDIX: PHE TESTING PLAN PRESENTATION ...33

5 | P a g e

INTRODUCTION

Kentucky’s Integrated Eligibility and Enrollment System (IEES), along with kynect Benefits,
kynect HealthCoverage and Medicaid Management Waiver Application (MWMA) portals, is
designed to provide Medicaid, Supplemental Nutrition Assistance Program (SNAP), Temporary
Assistance for Needy Families (TANF), Childcare, State supplementation payments, MWMA,
Kentucky Level of Care System (KLOCS), Kentucky Integrated Health Insurance Premium
Payment (KI-HIPP) program, and State-based Marketplace services to Kentuckians.

Kentucky’s systems and testing team is led by The Office of Application & Technology Services
(OATS), Division of Eligibility Systems (DES). This division hires testers and business analysts
with specified qualifications. DES also has testers, business analysts and developers within the
Quality Management & Improvement Branch. This testing team structure includes the
combination of these specific staff members and team members from the contracted vendor,
Deloitte. Statements of Work (SOW) between Deloitte and Kentucky include a Responsibility
Assignment Matrix, (RACI Matrix) that outlines tasks and who is responsible, accountable,
consulted, or informed of specific activities.

Various tasks are managed by OATS’ Deloitte IEES MO&E SOW, which is in place currently.
In alignment with expectations from the CMS MES Testing guidance, Kentucky notes that CMS
reviewed and approved the Deloitte IEES MO&E Support Extension Statement of Work (SOW)
Master Agreement 758 1300000392-1, under submission KY-2022-11-10-EE-SOW-IEES MOE
Support Extension. The PHE Unwinding changes are handled through M&O.

Deloitte has designed, developed and implemented an integrated multi-layer IEES solution on
.net and Salesforce platforms to deliver these services. As part of the Public Health Emergency
(PHE) planning, Kentucky accounted for the eventual re-configuration to end, or unwind specific
functionality in these systems that was implemented for the PHE.

Deloitte and OATS are responsible for executing the testing to ensure monthly/major as well as
minor releases to IEES, kynect and MWMA are delivered with the required level of quality. This
Test Plan documents the proven testing strategy that has been jointly developed and modified
over the years to include the various types of testing required to support a system like IEES and
includes unit, integration, functional, user-acceptance, interface, data migration, automation,
performance, security and regression testing.

Testing will be conducted as part of standard System Development Life Cycle (SDLC) process.
Testing Phases include the following:

 Partner Integration Testing (PIT) - Testing includes partner integration testing in order to
simulate the data that partner system are to ingest. Partner system includes but not
limited to: MMIS, CMS, MCOs.

 System Integration Testing (SIT) - SIT includes verifying the functional system and
corresponding interfaces. During SIT planning, test scenarios will be mapped to PHE
requirements and scripted to validate the functionality is covered in testing.

 User Acceptance Testing (UAT) - UAT will validate that the functional release is
performing satisfactorily in accordance with PHE design specifications. Daily reporting
of test case execution and defects found will be provided by change request. During UAT

https://urldefense.com/v3/__https:/www.medicaid.gov/medicaid/data-and-systems/downloads/mes-testing-guidance-framework.pdf__;!!Db6frn15oIvDD3UI!jeNkoXsJtKaS9McWS9h8HGOp68f1INsNI3PjbQV-w1VPIPGI6LLn8RNW8SYQynUPBwymClF8dtvC6Ga9FmjcSi6QNIzD$

6 | P a g e

testers will ensure that post PHE changes that the system is stable, converted data can be
processed, and the system can process the administrative work.

 Regression Testing - Regression Testing will include the re-execution of PHE scenarios
to ensure that the constant builds into the wider system that were already executed were
not altered by the frequent weekly UAT builds. Regression testing occurs in sync with
the development process to test parts of the solution to confirm the stability of the
development and reduce risk related to introducing unexpected defects to users while
modifying system code. UAT testers use a combination of both manual and automated
regression test scripts both simulated (data created) and converted data.

 Operational Readiness Testing (ORT) – ORT is done as part of all IEES releases where
key Medicaid functionality is tested.

 End-to-end test scenarios are included in all phases of testing.

A report of testing will be provided at the conclusion of testing for each release and Kentucky is
happy to share testing knowledge regularly.

 Release 23.03, implementation date 3/31/2023
 Release 23.04, implementation date 4/28/2023
 Release 23.05, implementation date 6/2/2023

Objectives

The objective of this system artifacts report is to describe the overall test plan strategy. The
purpose of the plan is to:

 Describe the testing approach and philosophy
 Identify types of testing, test data, and test environments
 Define test monitoring, defect management

7 | P a g e

Testing Overview

Testing is an integral part of the Systems Development Life Cycle (SDLC) because it validates
the ability of components and systems to meet expectations. Deloitte has developed a set of
methods that have been used to shape the standard approach to testing. Deloitte’s methodology
provides an industry-leading testing approach that integrates testing processes, methods, and
tools with testing artifacts produced during the solution development. Deloitte’s standards and
guidelines for both reporting detection of defects as well as resolution of defects, consist of
qualitative values. Deloitte’s vulnerability assessment approach is designed to align with leading
industry standards such as National Institute of Standards and Technology (NIST) Special
Publication (SP) 800-64, Open Source Security Testing Methodology Manual (OSSTMM)
version 3.0 and Open Web Application Security Project (OWASP).

Multiple testing tasks are important to identify the systems’ abilities to meet functional and
technical requirements. Deloitte’s experience will bring a structured, low-risk verification
approach to testing the IEES solution. The methodology initiates testing activities in the
Elaboration phase where we define the specific approaches and business scenarios to support the
rest of the IEES project. The following graphic illustrates the close linkage between design and
testing activities supporting traceability to business requirements.

Figure 3-60. Overall Testing and Verification Approach

Deloitte’s testing and verification approach has a one to one map to the design activities which
helps in identification of meeting the system’s functional and technical requirements.

General Approach

Deloitte will execute an incremental testing approach with documented test plans to address the
functional and technical portions of the system and environment. The test plan is developed

consistent with the overall test strategy and serves as a guide for creating test cases and test data.
Creation of the test plan includes, but is not limited to, the following:

1 | P a g e

 Testing approach

 Roles and responsibilities

 Staffing requirements

 In/Out of scope tasks

 Risks

 Test schedule

 Test tools

 Defect classification

 Description of test environments

 Test data requirements

 Entrance and exit criteria

 Test case management

 Test reporting

Microsoft Team Foundation Server tool will be used to document test scripts for each type of
test. It has specific sections for recording the test action, the expected results of running the data,
the actual test results to be compared with the expected results. This provides a common
approach to documenting tests regardless of the type of test. This also provides a single
repository for the data related to testing including defect tracking. TFS provides the capability to
extract and generate a Requirement Traceability matrix that can provide the test coverage details
with each release

Deloitte’s testing approach includes the following test plans including:

 Unit Testing- provides verification of the hardware or software prior to integration of
those items. Unit testing is highly iterative and is an essential aspect of defect
management. By performing unit testing as components are developed, defects and issues
are identified earlier and as a result are less costly and time-consuming to resolve than
defects found later in the testing process.

 Integration Testing - validates that the components are functioning as expected when
operated individually or as a group. This involves testing the assembled individual
components and tests them with other components.

 Iterative Functional Testing - leverages test case execution using a subset of System test
scripts that verifies the components developed for each logical iteration of the system

meet all functional and technical requirements as defined and approved in the Test Plan
and the Requirements Definition Phase.

 System Testing - testing the software and required hardware/network infrastructure as a
whole. System testing will validate the system by simulating the numerous variations of
user process flows (both positive and negative),user or application security and system
initiated use cases (both positive and negative), and other application requirements.

 Data conversion – Testing includes data integrity checks at both the record level and the
data element level.

 Interface - verifies that functional requirements for full integration with other groups are
in place for testing. The interface testing will begin early in the testing life cycle and can

continue throughout the life of the project should there be a need to add additional
components.

2 | P a g e

 Performance - confirm the performance of the entire technical architecture, which
includes the performance of software applications, integration, database, network, and the
hardware components included within the scope of the implementation.

 Regression - confirm that previously tested application functionality or critical end-to-end
business workflows or system performance has not been adversely impacted by the
implementation of new or updated functionality, defect fixes, production fixes or
infrastructure upgrades.

 Security - confirm that only authenticated users with the required role(s) are able to
access the appropriate functioning of the new IEES solution per applicable security
configuration. It also validates operational processes such as granting a user access to an
application or logging user activity on an application are working as designed.

 User Acceptance and system (includes usability, language, browser, and Iterative
functional) - evaluate the effectiveness as a whole while taking into consideration unique
or special usability needs of users.

Testing Philosophy

Deloitte’s framework incorporates testing in each phase of the System Development Life Cycle
(SDLC), from start to finish. The testing methodology is built upon the following guiding
principles and philosophy:

 Plan Testing Early. Up-front planning likely facilitates starting to test on time and
staying on schedule.

 Test Early. It is less costly to fix errors early on in the systems development life cycle
rather than later.

 Clearly Define and Measure Testing Entry and Exit Criteria. Minimize the gaps and
overlaps in testing by clearly defining the objectives of each test level/cycle and
measure against entry and exit criteria to address objectives.

 Define Test Cases During Design Activities. Create test cases while executing design
activities in order to validate there is a direct correlation between business requirements
and test cases.

 Prioritize What Will be Tested and in What Order. Plan so that the critical,
significant, or riskiest requirements are addressed as early as possible to provide the
time needed to resolve possible issues.

 Develop Solid Test Models. Develop well-documented, repeatable test models to
facilitate analysis and regression testing of identified defects in the current level of test,
as well as other test levels.

 Test with Appropriate User Involvement. Users will not only take ownership of the
system but also have the business expertise and are in the best position to determine and
validate if the application conforms to the business requirements.

 Automate Testing Where Possible. Use automated testing tools to increase testing
execution speed and accuracy within the testing levels.

3 | P a g e

 Establish Defect Thresholds. Clearly define and communicate Service Level
Agreements (SLA’s) for test level transitions and defect resolution.

 Exercise End-to-End Business Process Lifecycles Early and Often. Structure testing
to support end to end business processes testing and execute early and often to increase
test exposure across the system.

Test Standards

Deloitte follows recognized and agreed upon standards for software testing to follow supreme
quality approach towards Quality Assurance. These standards provide the guidelines for
standardization of test documents and establish a methodology for implementing, analyzing, and
validating the software testing process as well as providing the quality metrics.

 Test documents such as Test Plan, Test Case and Requirement Traceability Matrix are
created using pre-defined approved templates.

 Test coverage and Test Case Review checklists are used to make sure coverage and
reviewing test cases.

 Standard Test reports and test metrics documents are followed which can be curated to
accommodate client specific requirements.

Approach to Non-testable Requirements

Deloitte will work in collaboration with CHFS to determine possible approaches to test difficult
to test or untestable requirements. There may be test scenarios that include non-testable
requirements necessitating either specific data unavailable to test and/or time dependent
escalation rules that take weeks to execute but cannot happen in the testing time frame of the
IEES project. Under such scenarios, we will simulate such scenarios by staging test data
manually to facilitate the condition necessary. For example, if an email is supposed to go out if a
certain failure occurs, which we cannot trigger to occur in the IEES application, then such
scenarios are tested by simulating the failure. Deloitte understands conducting integration testing
with external operational systems requires availability of an external test system. However, if
such an external test environment for systems operational in production is not available, Deloitte
works with CHFS and external entities in developing a test stub that simulates the external
system interface necessary to conduct testing. Deloitte also employs techniques such as
automation and performance tools to test performance requirements, by simulating real world
conditions which may not be possible or practical in the given testing phase.

4 | P a g e

Testing Tools

Microsoft TFS

Deloitte and CHFS will be using Microsoft Visual Studio Team System Team Foundation Server
(TFS) to track requirements, usage scenarios, and test scripts. Deloitte and CHFS has
successfully used TFS in the past in large project implementations for source code management
as well as for project repository for all usage scenarios, use cases, requirements, designs, test
scenarios, test cases, test results and other project artifacts.

Testing Tools Integration with Test Activities

The teams deep experience in testing and in the use of Microsoft Team Foundation Server testing
tools allow us to quickly develop, organize, execute, and report on testing activities in both
manual and automated testing. The following table illustrates how test activities benefit from test
tools integrated throughout the testing activities. A customized tool might be developed when it
is necessary to assistant testing execution such as a test driver harness or test stub harness to
simulate external interfaces to feed in response for components under testing.

Figure 3-72. Testing Tools

Types of Testing Tools Used Usage

Unit Testing MbUnit

SonarQube

MbUnit is a generative unit test framework. It
gives the end-users the "high order" test
fixtures and to the developers the tools to
build new custom fixtures without modifying
the Core. It implements the simple test pattern
and provides new fixture types.

Sonar Cube sample reports are generated
which represent the bugs, vulnerabilities and
code smells to be addressed before deploying
code to higher environments.

5 | P a g e

Types of Testing Tools Used Usage

 Integration Testing

 Iterative Functional
Testing

 System Testing

 Regression Testing

 Interface Testing

 Iterative Functional
Testing

 User Acceptance Testing

 Data Migration Testing

TFS

REST Assured for
API Automation

Selenium and Appium

TFS Provides ability to manage Custom test
automation. Tester can publish test results to
the TFS data warehouse to get better
management of test results. It allows these
results to be viewed by all other members of
the development team and easily determines
the relationships between bugs, builds, and
test results.

Our Interface testing methodology addresses
the complexities associated with
implementing multiple APIs and Services
which includes SDH and HBE Interfaces. We
have leveraged REST Assured to optimize test
coverage across all key Interfaces, enable test
suite reusability, and implement a data-driven
test strategy without being contingent upon
front-end readiness.

Increased automation test coverage (smoke,
SIT,UAT, regression) with Selenium and
Appium Automation test frameworks.

Security Testing HCL AppScan

 Microfocus Fortify
Static Code
Analyzer

 Burpsuite

HCL Appscan is a Dynamic Application
Security Testing (DAST) tool which helps in
identifying security vulnerabilities in the
application by performing automated scan

Scan the source code with all external and
internal libraries

Burpsuite is used to perform end to end
manual security testing of the applications.

Performance Testing Visual Studio Team
System Profiler
(VSTS)

DynaTrace

SQL Diagnostic
Manager- Idera

Allows running customizable tests and
collecting critical data. The test reporting Web
site feature enables tester easily share test
results, analyze data, and manage stored test
results.

Automated monitoring and reporting of web
applications using Dynatrace.

Database monitoring and profiling is
performed with Idera tool.

6 | P a g e

Types of Testing Tools Used Usage

Usability Testing Internet
Explorer Toolbar
(Web Accessibility
Toolbar) by Vison
Australia

 Compliance Sheriff

The Web Accessibility Toolbar aids manual
examination of Web pages for a variety of
aspects of usability/accessibility. It consists of
a range of functions that:

 Identify components of a Web page;

 Facilitate the use of 3rd party online
applications;

 Simulate user experiences via various
window sizes and other options; and

 Provide links to references and additional
resources.

Compliance Sheriff runs on a regular basis to
check for Section 508 compliance, and the
reports are forwarded to the content owners
within the agency.

Browser Testing Visual Studio Provides comprehensive testing solution that
enables tests on IE, FF, and Safari browsers.

7 | P a g e

Testing Phases

Each testing phase is performed in a dedicated test environment. The advantage of testing in
isolated environments is that it allows testing to occur without interrupting the development life
cycle, facilitates test data management, and allows the easy reproduction of defects for further
analysis. As part of the IEES Solution, Deloitte proposed a multi-faceted testing phases to
coordinate and manage planning and development of testing activities. Deloitte’s testing
approach brings together the business users, developers, and testers. They collaborate to reach a
common understanding about what functionality to construct and test within the software life
cycle. The team then determines when the tests should happen, what test criteria is needed to
validate the features, and what quality aspects should be considered (e.g., functionality,
reliability, usability, efficiency, performance). This makes the whole team responsible for
quality, not just the testers. Key testing phases are described under the section Testing Processes.

Unit Testing

Unit testing is primarily performed by the development teams as part of the development effort.
Deloitte’s approach to unit testing provides verification of the hardware or software prior to
integration of those items. Unit testing is highly iterative and is an essential aspect of defect
management. By performing unit testing as components are developed, defects and issues are
identified earlier and as a result are less costly and time-consuming to resolve than defects found
later in the testing process.

As a part of the unit test plan, Deloitte will submit the approach to Unit Testing; including targets
for unit test coverage and pass rates, for approval to CHFS prior to the commencement of the
development phase. The unit testing will begin early in the development life cycle and can
continue throughout the life of the project should there be a need to add additional components.
Unit testing will take place in the development environment. Deloitte will use MbUnit tool to test
the different system components during unit testing. Additionally, a customized tool might be
developed to aid in unit testing. Once the application modules have been adequately unit tested,
they will be ready for the integration test phase. A member of the Deloitte team will complete the

development of software components then move into unit testing. The Deloitte team member
who is responsible for component construction is also responsible for identifying and creating
test data and completing the unit test process. Deloitte understands and will work with CHFS to
submit its approach to Unit Testing including targets for unit test coverage and pass rates, for
approval to CHFS prior to the commencement of the development phase.

Integration Testing

Integration Testing validates that the components are functioning as expected when operated
individually or as a group. This involves testing the assembled individual components and tests
them with other components. The developer evaluates the resulting artifacts while testing the unit
as a component of the system, emphasizing regression testing for common objects or other
objects that have dependencies to other artifacts. The test plan includes test data, expected inputs

8 | P a g e

and outputs, and any automated testing to be utilized. By involving selected tests, early
validation of functionality is achieved. The Integration testing will begin early in the
development life cycle and can continue throughout the life of the project should there be a need
to add additional components. Integration Testing will take place in the development
environment. Once the application modules have been adequately integrated tested, they will be
ready for the iterative functional and system test phase.

Deloitte understands and will work with CHFS to include its approach to Integration Testing,
including the recommended environment for Integration Testing, in its Test Plan. Integration
testing guidelines shall be included in development standards documentation.

Iterative Functional Testing

Deloitte’s team will use an Iterative approach to Functional Testing that leverages test case
execution using a subset of System test scripts that verifies the components developed for each
logical iteration of the system meet all functional and technical requirements as defined and
approved in the Test Plan and the Requirements Definition Phase. The IEES solution will be
released to production incrementally in a release approach. The iterative testing approach not
only supports the verification of the new functionalities being released, but also includes the
verification of the previous existing functionalities. This is achieved by conducting regression
testing components developed for each logical iteration of the system as defined in the test plan.
Regression testing is an integral part of the iterative test approach and may be performed within
each test phase or as a separate test phase by itself. Please refer to the regression testing section
for additional details.

System Testing

System Testing is the process of testing the software and required hardware/network
infrastructure as a whole. System testing will validate the system by simulating the numerous
variations of user process flows (both positive and negative),user or application security and
system initiated use cases (both positive and negative), and other application requirements. It
confirms that the tested requirements are met in a manner consistent with the system
requirements. The structured approach to testing the system assesses the functionality and
interoperability of the System and the multiple other systems and subsystems it interacts with,
such as databases, hardware, software, rules engine, document management system, identity
management system, workflow, interfaces and web services, and their integration with
infrastructure into an overall integrated system based on our experience with large-scale HIX and
IE systems. System testing is performed in a separate environment to work diligently toward a
stable test environment.

Deloitte’s approach also includes testing both manual and automated processes to confirm a
valid test. By involving selected end users in these tests, early validation of functionality is
achieved. The system testing will begin early in the testing life cycle and can continue
throughout the life of the project should there be a need to add additional components. System
Testing will take place in the system test environment. Once the application modules have been
adequately integrated tested, they will be ready for the subsequent functional regression phase.

9 | P a g e

Interface Testing

Interface Testing is a critical part of systems and integration testing. Interfaces are responsible
for sharing information such as verifications and data exchanges. Deloitte’s structured approach
to testing interfaces is based on experience with large-scale HIX and IE systems. It is important
to identify test scripts that will cover the data sensitive needs of various business scenarios.
Interface testing is a formal procedure carefully planned and coordinated, focusing on areas of
the IEES solution to plan for the completeness of interface development and the readiness of
developed interfaces for integration in the wider system. These scenarios are meant to evaluate
not only that the featured functionality is performing as expected but also that other related
functionality is not impacted by this code. Interface testing verifies that functional requirements
for full integration with other groups are in place for testing. The interface testing will begin
early in the testing life cycle and can continue throughout the life of the project should there be a
need to add additional components. Interface Testing will take place in the QA environment.
Once the application modules have been adequately tested, they will be ready for the subsequent
functional regression phase.

Regression Testing

Regression testing is an integral part of the iterative test approach and is performed within each
test phase or as a separate test phase by itself. The objective of regression testing is to confirm
that previously tested application functionality or critical end-to-end business workflows or
system performance has not been adversely impacted by the implementation of the following:

 New or updated functionality

 Defect fixes

 Production fixes

 Upgrades to infrastructure

Regression testing also establishes a baseline measure of critical functionalities and technical
metrics. Once the baseline is accepted by CHFS, the baseline is used as a gauge when
performing subsequent regression tests to confirm that the system achieves the expected level of
system performance. The baseline is updated to align with newly released functionality. Our
regression test approach takes on the following two forms:

 Regression — Upgrade. This type of regression is only applicable when testing a
software upgrade. A representative subset of test cases from the previous release would
be executed to confirm that the new functionality does not negatively affect existing
working production code.

 Regression — Post Exit Criteria. To confirm that issues that are detected and
corrected and associated with later phases of testing do not affect any previously passed
working functionality.

For both types of regression testing, the scope of the test scenarios is typically a subset based on
system test scenarios and the identification of key business processes within a release. Deloitte

10 | P a g e

will work with CHFS to obtain a mutually agreed upon set of scenarios, chosen to promote
maximum functional and technical coverage of regression testing. Based testing methodology,
regression test scripts will be executed during each iteration before the new IEES solution code
is deployed into production. This verifies the quality of the application and builds the CHFS’s
confidence that newer code changes have not adversely impacted existing functionality. . Our
comprehensive automation approach brings in test efficiency during the regression phase

Security Testing

Our approach is tailored to provide a holistic solution for application security testing that will
help you make sure risks are identified and addressed early in the software development life
cycle. We understand the State requirements and provides custom solutions by reviewing and
analyzing the output from automated SAST/DAST and perform additional manual tests to reduce
developer effort and provide truly actionable results by eliminating false positives.

The table below describes our security testing techniques that may be used in assessing the in-
scope applications. The usage of the tools may be limited to what the CHFS may provide for the
purposes of testing. Security testing will be performed in a representative non-production
environment. The applicable vulnerabilities are remediated and the controls are then propagated
and/or applied across other environments.

11 | P a g e

Figure 3-74 Vulnerability Assessment and Penetration Testing Techniques.

Security Testing Activity Description

Application
Vulnerability
Assessment Testing

Static Application Security Testing (SAST)

 We will perform a secure code review of the programming code. An

automated code review will be performed on the application and

webservices source code using a static code analysis tool. Manual

validation of the identified SAST tool vulnerabilities will be performed

to eliminate false positives.

Dynamic Application Security Testing (DAST)

 We will perform DAST of the in-scope applications and web services

in a runtime environment using automated tools to identify potential

security vulnerabilities. The specialist performs an (false-positive)

analysis of the findings using industry-standard methodologies, and

techniques (e.g., OWASP) to determine vulnerabilities, threats, and

risks to the application and its data.

Manual Testing

 Manual Testing will be performed to analyze the application and web

services for standard and advanced application security findings using

industry-standard methodologies, and techniques (e.g., OWASP). This

manual testing approach target to identify real-life cyber-attacks,

associated threats and uncover any risks to the application by simulated

cyberattack against the application.

Manual Code Review

 Deloitte will perform a manual source code review of the programming

code to identify violations of security-specific coding rules and

guidelines and discover the vulnerabilities not reported by the

automated tool.

Performance Testing

The focus of performance testing is to confirm the performance of the entire technical
architecture, which includes the performance of software applications, integration, database,
network, and the hardware components included within the scope of the implementation.
Therefore, it is important to confirm that the performance testing correctly models the anticipated
production workload in the new solution. Stress and volume testing are extensions of
performance testing. Where performance testing strives to simulate a typical day in the life of the
system, stress and volume testing push the system beyond its intended usage levels—-more users
are added, more data is added, extended longevity testing is performed. The main objectives of
performance testing, stress testing, and scalability testing are to:

 Measure the IEES user and customer experience of application response time before the
system goes live.

12 | P a g e

 Discover performance flaws in the application and supporting infrastructure in a
controlled manner so flaws are addressed early on rather than potentially causing severe
performance degradation, or even an outage once the application is deployed in
production.

 Simulate “high usage” of the system (i.e., stress and volume tests are executed at 120
percent, 150 percent, etc. of normal performance testing), so as to provide indication of
how the system would respond if volumes unexpectedly increased significantly.

 Seek any further performance and/or system tuning opportunities.

Deloitte will actively test for performance flaws in the application and supporting infrastructure
in a controlled manner so we address flaws early on through additional sizing, rather than
potentially causing severe performance degradation, or even an outage once the application is
deployed in production.

Load Test

The purpose of load test is to evaluate the IEES system performance under a peak load
conditions of current concurrent users and transactional volume metrics. Load test will measure
the expected response time, transactional volume, and system resources against simulated real-
world user loads.

 Load tests will begin with a minimal user load to validate and verify that scripts have
been properly recorded and that the environment is ready for test.

 The scripts will then be ramped up to an estimate of over 110 percent of the current
peak concurrent user and transactional volume metrics.

Scalability Test

Measure and identify how far the application and architecture can scale to sustain the anticipated
growth of concurrent users and transactional volume.

 Scalability Tests will be run post Load Test completion

Stress Test

This test is essential to determine upper limit capacities for the IEES operations. Scenario
volumes will be ramped up to scaled up estimates to identify situations of saturated resources.
This is a form of testing that is used to determine the stability of the IEES.

Usability Testing

The usability of an application can be affected by various combinations of technology, design,
users and process. Usability testing addresses considerations across these core areas while taking
into consideration both quantitative and qualitative measures of usability. Diversity in the user
base, as defined by varying levels of skill or knowledge, education level, access to technology,

13 | P a g e

and familiarity with process among others, is considered in testing. The main objectives of
usability testing are to:

 Identify major usability problems - including problems related to the specific skills and
expectations of the users

 Obtain measurements for the ability of users to complete tasks within a reasonable
amount of time or steps

 Assess users' effectiveness, efficiency and satisfaction

 Provide input back into the design and development process to improve the overall
system

 Identify areas of need for potential user training

Deloitte will work with the Commonwealth to identify a role-based approach to usability testing
in which we are identifying target user segments and tailor testing plans to the role. Testing will
be delivered through a combination of formal usability labs, user research, and automated testing
tools. Features of the application that are typically tested in Usability Testing include:

 Ability to find the site

 Home Page for context and guidance

 Navigation

 Site Architecture

 Layout and Design

 Content and Readability

 Search and Results

 Calls to Action

The test strategy will address six key steps to delivering effective usability testing:

14 | P a g e

Figure 3-77 Key Focus Areas of Usability Testing

Key Component Key Focus Areas

Define Target User Segments Identify the most effective methods for usability testing

 Identify up to 3 target user segments for testing

 Determine appropriate tasks and scenarios to be tested based on

scenarios that mirror tasks that users would perform with the solution

 Tailor test scripts to characteristics of target user segments

Identify Success Metrics Success metrics may be quantitative or qualitative, or a combination of

both

 Quantitative success metrics may include task completion within a

specified time frame or a percentage of successful tasks.

 Qualitative metrics may consist of verbal or anecdotal approval of

functionality or look and feel

Execute Usability Tests Usability Lab: Scenario and task based testing in a 1:1 Usability Lab

for the three groups identified

 Accessibility testing tailored to disabled users

 Use of automated testing tools for 504 and 508 compliance

Report Results Communicate findings on an ongoing basis

 Summarize and deliver final results in document form and include

findings relating to each of the guiding hypotheses.

Incorporate Feedback Usability testing is only valuable if the results can be evaluated and

implemented into the solution.

 The testing strategy will establish the process by which usability

testing results are prioritized, design changes made, and incorporated

into the solution

An important component in developing the Usability Testing Strategy is to identify the
appropriate target user groups and that the testing of a particular group includes an appropriate
representation of users. While developing the strategy, Deloitte will work with the
Commonwealth to identify and define target user segments for usability testing. These groups are
identified as:

 Internal and external users

 Power users

 Users with limited computer skills

 Users who will require training in the system to complete their daily work

15 | P a g e

 Users with disabilities

 Prospective new users

User Acceptance Testing

UAT assesses end-to-end business and technical functionality using actual production rules and
data resembling production operations. Deloitte’s UAT plan outlines an approach for planning,
testing, and verifying the functionality of the solution in accordance with the business and
technical requirements. It defines the approach to confirming that the requirements are
implemented successfully in the solution.

OATS develops UAT test conditions, scenarios, and scripts. The test scripts represent the new
IEES functionality that the user would typically use, including functional, technical, and
application security testing. These scripts also allow a repeatable testing process providing
regression testing as needed for changes made.

Deloitte will work together with CHFS to identify the production data to use for each test case
within each business scenario.

User Acceptance Execution Facilitation

A key element of success throughout User Acceptance Testing is the planning, coordination,
facilitation and communication activities that take place among stakeholders on a regular basis,
as described in the following sections.

Pre User Acceptance Test Execution

Prior to the start of User Acceptance Testing, as needed, there will be a kick-off meeting to
communicate details of the UAT plan, execution approach, and other key information to the
entire UAT team

User Acceptance Test Execution

The following activities are performed to coordinate, facilitate, and communicate the progress of
testing:

 Execute UAT scripts and log defects (performed by the CHFS/SMEs/Testers)

 Produce a weekly schedule of planned case executions and refine it on a daily basis as
needed, taking into consideration the dependencies and sequencing activities that need
to occur as part of the case executions, including activities at the different testing
locations (performed by the CHFS UAT Manager with assistance from Deloitte)

 Record the status of daily case executions real-time in Test Management Tool as the
scripts are executed, to enable real-time reporting and analysis of the test execution
status (performed by CHFS/SMEs/testers with assistance from Deloitte)

16 | P a g e

 Conduct daily UAT touch point calls with the CHFS UAT Manager, his designee(s),
and the Deloitte testing lead and his designee(s), making the key testing statistics from
that day available for distribution to the CHFS/Project Managers. This meeting serves
as an integrated forum to provide a status of testing for the day as well as discuss key
issues and defects that require priority attention

 Work through defects and questions that arise through the testing process via daily
communications and interactions between the Deloitte UAT Support Team and
Development, Data, and Infrastructure Team members

 Coordinate communications with the CHFS/Site Leads and SMEs for any functional
clarifications and defect resolutions that require additional subject matter input
(performed by Deloitte)

 Participate in defect triage meetings and facilitate communication between the Deloitte
Team and SMEs/testers in those sites as required (performed by CHFS Site Leads)

 Resolve test case defects that may require some clarification from the SMEs to validate
the intended test steps, recording and managing any case defects that require a fix by
Deloitte through Test Management Tool

 Distribute UAT execution reports to the CHFS/Project Managers and Deloitte indicating
the status of case executions and defects (distributed by CHFS UAT Manager with
secondary support from Deloitte)

 Discuss UAT status updates at weekly project status meetings and at regularly
scheduled Executive Leadership and Steering Committee meetings

Data Migration Testing

Data conversion and migration is one of the riskiest parts of any large technology initiative such
as IEES. Data migration is done only in cases of new projects (for example the Childcare
implementation where data from old system was being loaded into IEES or the implementation
of the State Based marketplace where data from the federal marketplace was loaded into IEES).
The Deloitte team brings production proven automated data conversion experience from similar
statewide system implementations and a tested conversion approach to migrate data meeting the
business needs of CHFS. In addition, Deloitte will actively engage CHFS in the planning,
designing, construction, testing and execution of migration. Involvement from all parties is
critical to a smooth migration. Deloitte will work with CHFS to finalize the data migration test
plan where in exception tolerance levels shall be agreed with and approved by CHFS prior to the
commencement of migration testing. Test results will be reviewed and approved by CHFS prior
to commencement of production Data Migration.

Conversion testing provides the benefit of improved data conversion rate, reduced data cleanup
efforts, and improved data quality. This activity involves setting up the environments, testing the
migration programs, validating results, and preparing for the final execution of the migration.
This is one of the more extensive pieces of the migration process. Deloitte is experienced in
working with other states for data conversion efforts and has an in depth understanding of the
requirements and considerations of preparing and testing the conversion load process. The

17 | P a g e

testing of the conversion programs starts during the cleansing phase, however the focus during
the load process shifts to integration testing and testing conversion outputs against the
requirements. As part of this activity, capacity planning and estimates of data volume are
finalized. Control counts are used to monitor and control the conversion process as well as test
the conversion timings as we run mock conversions during the testing phase of the migration.

The following activities are used to test the migration process and programs:

 Development, System Integration, User Acceptance, and Conversion
Environments. These environments are configured to support the repeated testing of
the conversion process and associated code artifacts.

 Preparing Test Data. Data for testing the conversion programs is developed, pre-
conversion reports are run, and test scenarios are created to compare the converted data
and test the transformation logic

 Mock Conversions (Dry Runs). Periodic mock conversions for an entire set of source
data are conducted to perform load testing and testing of conversion programs/code in a
test environment. During this phase, we also determine how the converted data runs
against test scenarios and run the data into the IEES database tables to validate the
integrity and completeness of the data to support the new application, both from the
database side and the application side. Since the mock conversions require the data to be
of the same quality as the actual conversion data and require the new application to
support converted data, this step needs to take place later in the overall application
development.

Testing Methodologies

Usability Labs

Usability Labs are a core approach employed by Deloitte to evaluate the effectiveness of an
application. Usability Lab testing consists of one-on-one interviews, one facilitator with one
user, in which each of the participants will be supplied with a computer and monitor. Participants
will be asked to perform specific tasks in predetermined areas of the site.

Automated Testing

At the Commonwealth of Kentucky, we have established an Automation Foundry that
continually defines new and improved frameworks and uses emerging technologies to augment
test automation for you. We can personalize automation suites to match trends we observe in
production or to heavily test areas of the system that are high impact and have been promoting
the most code changes. Our comprehensive automation approach brings in test efficiency during
the regression phase

18 | P a g e

We have leveraged a combination of Selenium and Appium for increased automation test
coverage of UI based component testing. All the 7 UI applications (Worker Portal, Salesforce
Self Service Portal, Waiver, KLOCS, Agent Portal, Issuer Portal and Provider Portal) have been
automated using the current framework. We have implemented reusable components and have
created a library to expand the automation of UI functionality and improve re-usability.

Deloitte’s custom-built test automation solutions provide low cost, low complexity, and highly
effective solutions in testing. They offer a robust capability to overcome challenges posed by
traditional automation tools across the various stages of the test lifecycle.

Software testing tools such as Compliance Sherriff will be used to perform automated testing to
validate 504 and 508 compliance.

Language Testing

Deloitte understands and acknowledges the Test Plan will include a strategy for testing the IEES
system in both English and Spanish. Deloitte’s approach also includes testing manual processes
to confirm a valid test. The language testing will begin early in the testing life cycle and can
continue throughout the life of the project should there be a need to add additional components.
By involving bi-lingual testers in these tests, early validation of language testing is achieved.
Language testing will take place in the system testing environment. Once the application
modules have been adequately tested, they will be ready for the subsequent UAT regression
phase. Deloitte’s approach to language testing follows system testing by simulating the
numerous variations of user process flows (both positive and negative),user or application
security and system initiated use cases (both positive and negative), and other application
requirements.

Browser Testing

Deloitte understands and acknowledges the Browser testing shall be performed using a subset of
System test scripts that promotes maximum system coverage. Deloitte will test the web
components of the IEES solution in the current release and at least one previous version of
Microsoft’s Internet Explorer, Mozilla’s FireFox, Google’s Chrome, and Safari. Deloitte
understands and acknowledges the machine configurations to perform all necessary browser
testing will be provided by Deloitte as per the Test Plan.

Test Techniques and Methods

Deloitte’s technique and method includes manual testing, automation of functional tests,
regression, and generation of virtual users to simulate load in an environment that matches
production. Using Team Foundation Server (TFS), test cases are grouped into test suites
composed of manual or automated tests to manage and execute the testing for a particular

release, or for any controlled ad hoc testing. A particular test suite targets the testing for a single
component in isolated testing. Test cases are selected and assembled into a test suite to guide ad
hoc test needs in any test cycle. In addition to support manual ad hoc testing, tool features will be

19 | P a g e

leveraged that record automation scripts along test execution so it can playback the test scenarios
the tester might envision.

The iterative testing approach not only supports the verification of the new functionalities being
released, but also includes the verification of the previous existing functionalities. This is
achieved by conducting regression testing in each release cycle. Regression testing is an integral
part of the iterative test approach and may be performed within each test phase or as a separate
test phase by itself.

For regression testing, the scope of the test cases is typically a subset based on technical analysis
and the identification of key business processes within a release. Based on our testing
methodology, we will execute regression test scripts every iteration before the IEES code is
deployed into production.

The use of automation technique is the key to reducing the time required for testing, improving
quality, and increasing test coverage. Our testing automation approach provides methodology,
guidance, and an automation testing framework. The development of automation scripts follows
the code development process going through design, coding, testing, and code configuration
control activities. Our testing automation approach includes repeatable processes that provide the
following benefits to the Commonwealth such as:

 Increased Efficiency of Test Execution. Test automation speeds up test case
execution. It saves test execution time and enables efficient testing schedules. It
provides the ability to execute scripts across browsers and operating systems.

 Increased Quality of Test Coverage. Data driven testing automation extends test
coverage of the release.

 Increased Testing Repeatability. Test script automation allows test cases to be
executed repeatedly in each iteration release to maintain the high quality standards
along incremental releases.

 Replication of Defects. Automation of test scripts provides for quick and easy
replication of software defects and verification of defect fixes.

Automation will begin with a smoke test, and then move to regression testing to include
frequently performed test cases, time-consuming test cases, and high precisions test cases. In
each iteration release, we keep adding automated test cases to cover new functionality whenever
a new component is available for testing. Our automation testing framework includes
components to allow effective creation and maintenance of automation test scripts. It also
supports automated test case execution in a repeatable and unattended way.

Testing Processes

The IEES project requires a strong commitment to each phase of testing. Deloitte’s experience
allows us to bring a structured approach to testing the new IEES system. For CHFS’s

20 | P a g e

implementation to be effective, quality must be built in from the beginning and not just tested at
the end. We bring an established testing approach that includes a transparent and broad process
supporting development and use a fully integrated toolset throughout the entire testing life cycle
to confirm requirements traceability. We provide an organized, well documented, and structured
process for managing and executing functional, technical, and deployment testing to drive
effectiveness at CHFS.

Preparation, Orientation and Kickoff

A key element of success throughout testing is the planning, coordination, facilitation and
communication activities that take place among stakeholders on a regular basis. Successful
planning and development of the testing strategy depends upon early identification of external
stakeholders and owners. The following graphic outlines the test planning and preparation
process from our EVD for SI method that will be used on the IEES project.

Figure 3-62 IEES Process Flow for Creating a Detailed Test Plan

Deloitte’s detailed test plan methodology extends previously created deliverables and produces a
test plan through a collaborative process with CHFS.

The table below outlines the various activities in the test preparation, orientation and kickoff for
the IEES effort.

21 | P a g e

Figure 3-63. Test Preparation, Orientation and Kickoff.

Key Activities Description

Identify testing
stakeholders.

Identify the appropriate stakeholders for the various testing activities, including
requirements stakeholders and end-user acceptance stakeholders. These testing
stakeholders include representatives from CHFS business and IT (including
business analysts and technical SMEs) to serve as an integrated group providing
sufficient representation of the organization.

Determine external
coordination
requirements.

Identify any external or third-party systems that affect the target system. This
includes, but is not limited to, external partners or customers that interface with the
system; and downstream systems, partners, or customers that receive output from
the target system or provide input into the target system. In addition, coordination
of schedules, resources, and content validation may also be required to
successfully complete full-cycle testing activities.

Confirm test phases. In collaboration with the CHFS, evaluation of the system being developed, and
input from project leadership, confirm which test types (e.g., System, Integration,
User Acceptance) will be executed. Document the specific test types that will be a
part of the testing process

Document the
structure and
number of roles
needed to plan and
execute test
activities.

Provide sufficient detail with respect to the specific roles and responsibilities for
each individual participating in the testing and defect management process. The
list includes, but is not limited to, the following:

 Specialized tester roles (e.g., Security, Accessibility, Load, Regression,

Interface, or Batch)

 Defect managers

 Developers

 Test data management resources

 Configuration management resources

 Environmental/administration resources

Enable testing tools. Confirm all testing tools are installed and configured for all identified test
computers. Confirm that any access permissions have been requested and acquired
for any users needing such privilege.

Provide training on
using testing
workstations

Provide training on using testing workstations, Test Management Tool, and other
testing tools. Conduct training and on boarding for new testers so they are familiar
with how to execute test scripts and record the results, including how to assess
severity, and how to log, retest, and close defects in a consistent manner to
maintain the overall standards and quality of the testing process (performed by
each CHFS/SME/tester)

Review test
readiness criteria.

Confirm the readiness of the testing environment for test execution by conducting
shakedown tests before each cycle when data is refreshed (Deloitte Team with
secondary support from CHFS/SMEs/Testers at the discretion of the CHFS Project
Manager)

Conduct Kick Off Conduct one or more kick-off meetings to communicate details of the Test plan,
execution approach, and other key information to the entire testing team
(conducted by CHFS Project Manager, CHFS Site Lead(s), and supported by the
Deloitte team)

22 | P a g e

Deloitte’s preparation, orientation and kickoff activities include early engagement of key CHFS
stakeholders in planning to promote a highly successful project testing effort.

Test Data

Deloitte has planned detailed test data prepared to address the functional and technical
requirements of the given release. This includes the manual creation of new test data via the
screens already functional at the beginning of testing – an advantage attained by leveraging
experiences implementing what is already successfully operating in production environments. It
also includes the creation of data from automated test scripts and again, with Deloitte, the
Commonwealth benefits from past experiences and ability to leverage the functioning scripts that
have been vetted in similar systems implementations. We also define the importance of, and use
of data sourced from conversion testing. For example, if the release includes the functionality for
redetermination of benefits, we create test data from the two sources that will reflect the data
reality of production once the system goes live: converted cases and newly created cases. We use
converted data where the converted case has already reached various states of redetermination:

 Cases where the redetermination is due

 Cases where the redetermination has been received back for processing, including
testing examples where the information received is complete and incomplete

 Cases where the redetermination is past due, and negative action is warranted on the
case

We use the “aging” environment to simulate a newly created case which has aged to the various
stages of redetermination, and repeat the same tests as outlined for converted case data. In a
technical example, if the release includes an interface that relies upon data from other batch jobs,
our tests include technical aspects such as running all of the related jobs in their correct sequence

to confirm that batch job dependency rules are correctly invoked.

User Acceptance Testing

The principal source for data for UAT is the converted data. This is essential because this is the
same data that will be most predominantly used as soon as the system goes live. Equally
important is the creation of new data through simulated applications, reported changes to existing
case data, and events such as redetermination. Data that is brought into the system from an
external interface is also included in the UAT test data set to validate the correct functioning of
interfaces. All of these data sources are documented in the UAT Plan including details on how
the data is made available to the testers.

23 | P a g e

Data Migration Testing

An important piece of the testing strategy is the use of production similar data. By using the data
that is used for a production conversion run, we are able to better analyze conversion timings and
benchmarks, data discrepancies, and the correctness of the defined conversion logic.

Anonymous Data for Testing Purposes

Obfuscating production data for testing and training purposes is done to protect sensitive
information from a multitude of threats posed both inside and outside the organization. Data
masking uses an irreversible process to replace sensitive data with realistic-looking, scrubbed
data. It does this based on masking rules that confirm the original data cannot be recovered. Test
data will be created by cleaning real CHFS customer information, including name, address, and
social security number (SSN) and inserting test data by using a randomly generated combination
from a random information generation database program.

The random generator is loaded with a pre-defined list of first names, last name, addresses, and
SSNs and the program assigns each of these to the test data randomly to create realistic data that
is completely fictional.

Test Data Refresh

Test data is refreshed, disguised, and readily available throughout the implementation by having
an efficient data extract, data disguise, and data execution model that is flexible yet repeatable as
shown in the figure that follows.

 At the end of each system test cycle within a phase, test scenarios will be reviewed and include
any appropriate changes in the test plan for the subsequent cycles. Data will be refreshed for
each release in the test environments.

24 | P a g e

Figure 3-61 Test Data Refresh Model
Test Data Refresh Model promotes a stable system test data during each test cycle.

25 | P a g e

Test Development

The objective of this process is to identify and prepare all test data required for the test effort.
The identification, creation of test data may occur in parallel with the test case development. All
subsequent iterations of the test or environment refresh will go through this task to prepare
incremental test data.

Test Execution

During test execution, the team executes a test cycle as documented in the test plan for a specific
test type. As a part of the test plan, a set number of test cycles will be scheduled for execution.
Each test cycle has a set number of test cases that will be executed according to a specific time

frame. This task will execute the test cycles planned during the previous task. We then evaluate
and compare the analyzed results against predetermined thresholds, and communicate how well a
software build specifies the stated requirements. As the test cycle is executed, any defects or

26 | P a g e

issues are reported during this process and resolved by the team. At the conclusion of the test
execution cycle, the metrics are reported.

These metrics are compared against set thresholds to determine if the build meets a specified set
of requirements and can be promoted. The following figure outlines the process for test
execution Deloitte will use for the IEES.

Figure 3-65. IEES Process Flow for Executing Test Cases

Deloitte’s detailed test execution process extends previously created deliverables to conduct
successful and thorough test execution on the IEES system. By executing the testing tasks
outlined in Deloitte’s approach CHFS will have the confidence that the following objectives are
being achieved:

 Find and document defects in software quality

 Manage defects in software quality to resolution

 Advise stakeholders/clients/project team members on the perceived quality of software

27 | P a g e

 Confirm the assumptions made in requirement and design specifications through concrete
demonstration

 Verify the software product works as designed

 Verify the requirements are implemented appropriately

Test Monitoring

Microsoft TFS will be used as the defect tracking system to meet CHFS specific needs. Defects
are managed and monitored from three perspectives: 1) logging and tracking the problem
through discovery, resolution, and closure; 2) providing for and managing the communication
among interested parties, and; 3) providing notification/escalation procedures to keep the
Deloitte management and CHFS management aware of the status of problems.

The progress of issue resolution is communicated through notification and escalation procedures
tailored to specific client requirements. Designated points of contact are identified for
notification of problems at multiple levels of escalation. After prescribed periods of time,
notification is escalated to the next level of management specified within the notification rules
for each party.

The information outlined in the table that follows should be collected at the minimum for each
defect. Detailed standards and guidelines provide testers from both the Deloitte team and CHFS
with guidance on how to document and report defects.

Figure 3-66. Defect Elements.

Defect Elements Description

Title A brief description of the defect

Description A more detailed description of the defect

Severity An initial determination of the severity of the defect based upon
standards and guidelines

User Impact A description of the impact of the defect to the user or tester

Priority An initial determination on the priority of the defect based upon
standards and guidelines

Functionality Impact What is the effect of the defect on the functional performance of the
system (e.g., is it a “cosmetic” defect or a functional defect?)

Reported Date The date on which the defect was first reported

Resolution A description of the resolution that took place

Verification Date The date the defect was assessed to be resolved by the testing team

28 | P a g e

The standards and guidelines for both reporting detection of defects as well as resolution of
defects, consist of qualitative values, an example of which is outlined in the table that follows,
providing key inputs in process improvement and, ultimately, prevention.

Figure 3-67. Defect Quantitative Values.

Defect Values Definition Quantitative Example

1 – Critical Defect prevents developers from
developing or testers from testing.
Software crashes, hangs, or causes loss of
data. There is no workaround.

40% or more test cases blocked

2- Major Important functionality with dependencies
is defective. There is a cumbersome
workaround, if any. Defect causes delays
in release from test.

20%-40% test cases blocked

3 – Medium There is a loss of functionality and a
workaround in place but undesirable and
time/effort consuming.

5%-20% test cases blocked

4 - Minor There is a small loss of functionality, and a
workaround is acceptable and
unnoticeable.

< 5% cases blocked

5 - Trivial This is a cosmetic problem, such as
misspelled words with no effect on the
development cycle.

No block

Defect Management Responsibilities

The table that follows depicts the team responsibilities throughout the life cycle of defects. Each
stakeholder is responsible for carrying out the specific responsibilities necessary to collect,
document, track, and resolve defects.

Figure 3-68. Stakeholder Testing Responsibilities.

Stakeholders Responsibilities

Deloitte Project Manager Work to coordinate across team in assisting prioritizing defects

 Manage resource constraints and coordinate across Design,
Development, and Testing teams

 Work with state stakeholders in release planning

 Facilitate Defect Review Board for large effort or impact defects

 Coordinate efforts for process improvement based upon defects
detected

Deloitte Development
Team Leads

 Coordinate resources for defect management

29 | P a g e

Stakeholders Responsibilities

 Assist in prioritization and development team effort estimation

Deloitte Test Team Leads Determine test schedule

 Coordinate test teams efforts across testing

 Assist in determining priority and impact for defects

Deloitte Development
Team

 Work to resolve defects

 Perform analysis of defects

Deloitte Test Team Identify defects

 Assist Development Team in recreating defects

 Assess defects have been resolved

CHFS Project

Management Stakeholders

 Identify defects

 Assist in prioritizing defects and determining user impacts

 Participate in defect review for large effort or impact defects

Test Status Meetings and Reporting

Deloitte’s testing methodology provides a tested set of processes and templates that will be used
throughout the projects to monitor and control the testing activities and the status of defects
detected during the phases of testing as defined in the Test Plan. Testing status will be covered as
part of weekly status meetings on a regular basis and during key phases of testing, Deloitte may
institute a separate test status meeting for involved parties.

Deloitte will provide CHFS with a Test and Defect Status Report. This report will be used to
provide regular updates on the status of testing activities. The same report format will be used
across all test phases. Using the same report format for all test phases increases the efficiency of
the report generation process and provides the stakeholders with a consistent structure that
quickly becomes familiar.

Closure Evaluation Criteria

Deloitte recognizes the importance of the Final Testing Report in communicating the results,
findings and closure evaluation criteria from the various testing phases. The End of Phase Test
Report is used by the test manager to outline the overall status of the testing, test cycle summary,
overall test results summary, exit criteria summary and tracking any deviations from the original
plan, open issues and risks, and the test phase defect analysis.

This report summarizes the testing results from all testing activities. Results of the testing can be
sorted or grouped by component, module or package and include the following metrics:

30 | P a g e

 Number of Test Suites

 Number of Test Cases/Scripts

 Number/ratio of failed and passed tests

 Code Coverage percentage (amount of code executed by tests)

 Number of defects identified

 Latest status of defects (e.g. number of defects resolved, rejected, withdrawn, deferred)

 Number of outstanding defects and issues

In addition to testing metrics, the Final Testing Report includes additional findings in the
following areas:

 Confirmation that test cases have been properly executed in each test type

 Description, impact and resolution plan for outstanding defects and issues

 Defect trends over time (e.g. trends in defect priority, type, repair time, severity)

 Completion status of testing exit criteria

When the Final Testing Report has been completed, it will be published to stakeholders for
review. Additionally, Deloitte conducts a final walk-through of the testing results with Project
Management and Project Stakeholders.

Approach to Creating Test Environments

Deloitte understands the importance of a clear distinction between development and testing
environments. The proposed environment plan provides a controlled migration process from
development and test environments to the production environment. Stable testing data and an
environment that mimics the production environment allows for consistently and properly
recreate defects and allow efficient repairs of any production problems. The Deloitte team will
implement an instance management and transport strategy to manage the testing process. There
is no configuration access provided to any environments other than the development
environment. Deloitte will make any configuration or code changes identified during testing in
the development environment and then transport to the testing environment for re-testing.

Our Test Environment Management Plan

Deloitte will utilize VMWare virtual machines for each development and testing environment.
This virtual environment approach allows the creation of isolated environments based on CHFS’
needs. Each virtual environment includes the database, network, and application software needed
according to the usage of the environment and the types of testing that are performed.

31 | P a g e

Code Migration and Testing through Environments

Deloitte’s environment approach segregates code between environments so different testing
activities can occur independently. Each environment has specific entry and exit criteria that
must be met before code can be promoted to the next environment.

Development is performed on the local machines of each developer, with a shared database
development environment. When development of a component and its associated unit tests are
complete, the developer must compile and build the code on their local machine. They must then
verify the unit tests execute as expected. The developer can then check the code into the TFS
source control.

The Integration environment receives code that compiles and builds successfully. It must also
contain unit tests for all in-scope functionality and meet a minimum unit test pass rate and code

coverage percent. The Integration Environment is used to conduct automated Developer Testing
(Unit and Integration Testing) and manual or automated integration testing to verify the code
base is stable. Any automated tests can be re-run in subsequent environments for regression
testing purposes.

The System Test environment receives code that meets a minimum unit test pass rate and code
coverage percent (the minimum criteria are higher than the Integration environment). The
System Testing environment is used to conduct functionality and interoperability tests of the
System and the multiple other systems and subsystems it interacts with, such as databases,
hardware, software, rules engine, document management system, identity management system,
workflow, interfaces and web services. Regression testing is automated using a subset of test
cases used for system testing to verify the system is stable. System Testing can be manual or
automated and is used to verify that the system is working end-to-end.

The Quality Assurance (QA) and User Acceptance Testing (UAT) environment receives a stable
code base that has passed Integration and System Testing. The entry criteria for moving code to
QA/UAT are more stringent than for Integration or Systems. This environment is used for User
Acceptance Testing (UAT), performance Testing and Load Testing. UAT verifies that the system
is ready to perform all required functions and meets all contract requirements from an end user
perspective. Load Testing verifies that the system can handle typical processing loads. It may
also include performance, stress and scalability testing, depending on the nature of changes from
previous releases.

The Data Migration environment also receives a stable code base that has passed Integration and
System Testing. Like QA/UAT, the entry criteria for moving code to this environment are more
stringent than for Integration or Systems. This environment is used for Conversion Testing which
contains migrated or converted data and verifies that the solution functions properly with this
data.

32 | P a g e

The Training environment receives production ready code after the testing has been completed
and accepted in the previous environments. This environment serves as a production like staging
environment to validate that the solution can be migrated to Production. It is used for training
end users on the production ready system.

The following figure depicts the progression of code and testing across the IEES environments
from integration through production.

Figure 3-71. Code Progression and Testing through Environments.

Multiple environments provide the ability to separate distinct testing efforts. The figure above
depicts the flow of code through the IEES virtual environments and the types of testing that
occur in each environment.

Additional Testing Responsibilities

Deloitte understands and acknowledges they will be developing all test conditions, scenarios and
scripts. Deloitte will work within mandated project timelines to obtain approval by CHFS
through the deliverable process prior to execution of any test phase. Deloitte understands and is
also responsible for preparation of all test data, including identifying data required for each test
phase that may require collaboration from Commonwealth resources to acquire that data.

Deloitte understands and acknowledges that all review milestones for System design and the
System Design documentation is kept up to date with updates to the design which occurs due to
changes or fixes that arise in the Testing Phase. Deloitte team realizes IEES’s need to meet CMS
guidelines and it is criticality for the solution’s production deployment and future sustainability.
Deloitte’s team carefully plans and aligns the IEES solution delivery milestones with the CMS
Certification processes, IEES Enterprise Roadmap, and CMS Exchange Life Cycle. Deloitte will
offer guidance and support so that IEES system meets the criteria required for CMS certification.

33 | P a g e

Appendix: PHE Testing Plan Presentation

UAT Test Panning
January 17, 2023

Kentucky Integrated Eligibility and
Enrollment System (IEES)

Commonwealth of Kentucky
Cabinet for Health and Family Services

Kentucky Integrated Eligibility & Enrollment System (IEES)Copyright © 2022 Deloitte Consulting LLC. All rights reserved. 2

Table of Contents

Topic Slide

PHE Scope 3

PHE Tesfing Timelines 4

SIT/UAT Scripfing 5

Reporfing 6

Regression 7

Operafional Readiness Tesfing (ORT) 8

34 | P a g e

Kentucky Integrated Eligibility & Enrollment System (IEES)Copyright © 2022 Deloitte Consulting LLC. All rights reserved. 3

PHE Scope

Notes: All items above are related to PHE but not all items will be a part of the initial PHE window. Also, items in green have already
been deployed to PROD with configurations to turn functionality on once PHE ends.

CR Release Release
Date

Part of PHE SIT TCs UAT TCs

CR 1448: Medicaid Renewal Realignment - redistributes the accumulated case load.
The cases will be distributed based on agency provided threshold limits and other
distribufion factors such as priorifizafion based on age and potenfial QHP qualificafion

23.03 3/23/2023 Yes 74 44

CR 1613: Facilitated Enrollment – allows IEES to leverage SNAP eligibility data during
the ex-parte renewal process in order to redetermine Medicaid eligibility

23.03 3/31/2023 Yes 18 11

CR 1623: Unwinding Passive Renewals (AVS) – IEES will not generate a Request for
Informafion (RFI) for resources when the Asset Verificafion Service (AVS) returns zero
results

23.03 3/31/2023 Yes 8 5

CR 1610: Unwinding – IEES will rollback changes made at the beginning of the PHE as
well as allowing confinuous eligibility unfil the Medicaid renewal is complete

23.04 3/31/2023 Yes TBD TBD

CR 1621: Returned Mail Bot – IEES will systemafically read returned mail and perform
the required updates, including outreach (robocalls, nudges) and the addifion of a
message to Worker Portal and the Self Service Portal for those who have returned
mail

23.04 4/28/2023 No TBD TBD

CR 1619: Unwinding - Fair Hearing Extension – extends the fimeframe to take final
administrafive acfion

23.04 4/28/2023 No TBD TBD

CR 1616: Renewal Nudges – send nudges to inform Medicaid recipients of their
upcoming renewal.

Already In Prod
(22.07. Phase 1
22.11. Phase 2
22.12. Phase 3)

N/A Yes N/A N/A

CR 1626: MRT Decision Automafion – systemafically review the Medical Review Team
(MRT) determinafion

Already In Prod
(22.09)

N/A No N/A N/A

Kentucky Integrated Eligibility & Enrollment System (IEES)Copyright © 2022 Deloitte Consulting LLC. All rights reserved. 4

Testing Timeline

Notes:
• All PHE UAT timelines will be merged with M&O GO Lives Dates for better alignment with other changes being delivered as a part of the regular

monthly releases. These dates are tentative and solely a projection. Timelines will not be final until confirmation is received from the KY DMS

PHE Releases
Testing Timelines
(SIT/UAT)

Alignment
with M&O
Releases

Jan ’23 Feb ‘23
March

’23
April
’23

Release 23.03

SIT Testing
M&O Go-Live:

3/31
UAT Testing

Release 23.04

SIT Testing
M&O Go-Live:

4/28
UAT Testing

35 | P a g e

Kentucky Integrated Eligibility and Enrollment System (IEES)Copyright © 2022 Deloitte Development LLC. All rights reserved. 5

OATS UAT Test Case Scripting/Selection

Test Cases count SIT TC Count (Planned) UAT TC Count (Forecast)

Release 23.03 XX XX

Release 23.04 XX XX

• The above UAT Test case counts are approx. 60% of Total SIT planned test cases. Historically, this is a
method used for UAT Test case planning

• OATS Team can review the current SIT Test Bed and finalize the Total Test Scenario and decide if
additional coverage beyond 60% is needed.

• Release 23.03 SIT Test cases are under way

• Release 23.04 Test planning is in progress and is subjected to vary based on final counts. Expected to be
finalized by 05/01 (tentative) before execution start date

• High Level Functionalchanges to be reviewed in the Official Kick Off meeting with the Tester before the
UAT execution begins.

Kentucky Integrated Eligibility and Enrollment System (IEES)Copyright © 2022 Deloitte Development LLC. All rights reserved. 6

Weekly Cadence: SIT/UAT Reporting

Daily reporting of test case execution and defects found will be provided by PHE change request. Example
of 23.01 burndown provided below. Same burndown will be built to reflect PHE burndown during 23.03 &
23.04.

36 | P a g e

Kentucky Integrated Eligibility and Enrollment System (IEES)Copyright © 2022 Deloitte Development LLC. All rights reserved. 7

Regression Testing will include the re -execution of PHE scenarios to ensure that the constant
builds into the wider system that were already executed were not altered by the frequent weekly
UAT builds. A robust master Regression suite will also be executed post code freeze to ensure
end to end health check of the system as a whole. Below is a sample of the regression suite
executed and reviewed by OATS at the end of December 2022 (22.12) release.

Automated Regression

Kentucky Integrated Eligibility and Enrollment System (IEES)Copyright © 2022 Deloitte Development LLC. All rights reserved. 8

Operational Readiness Testing (ORT)

UAT testers will also execute a set of manual scripts to ensure that the constant CR specific
builds into the wider system executed early in the release month were not altered by the
frequent weekly UAT builds. Below is a snapshot of what the manual and automation report
will look like.

Release 23.03 ORT

Total TCs Executed Pending Passed % Passed of Executed % Passed of Total

Manual ORT- PHE Focused 20 0 0 0 0% 0%

Manual M&O ORT 10 0 0 0 0% 0%

Automafion ORT 136 0 0 0 0% 0%

Total 166 0 0 0 0% 0%

	REVISION HISTORY
	INTRODUCTION
	Objectives

	Testing Overview
	General Approach
	Testing Philosophy
	Test Standards
	Approach to Non-testable Requirements

	Testing Tools
	Microsoft TFS
	Testing Tools Integration with Test Activities

	Testing Phases
	Unit Testing
	Integration Testing
	Iterative Functional Testing
	System Testing
	Interface Testing
	Regression Testing
	Security Testing
	Performance Testing
	Load Test
	Scalability Test
	Stress Test

	Usability Testing
	User Acceptance Testing
	User Acceptance Execution Facilitation
	Pre User Acceptance Test Execution
	User Acceptance Test Execution

	The following activities are performed to coordinate, facilitate, and communicate the progress of testing:
	Data Migration Testing

	Testing Methodologies
	Usability Labs
	Automated Testing
	Language Testing
	Browser Testing
	Test Techniques and Methods
	Preparation, Orientation and Kickoff

	Test Data
	User Acceptance Testing
	Data Migration Testing
	Anonymous Data for Testing Purposes
	The random generator is loaded with a pre-defined list of first names, last name, addresses, and SSNs and the program assigns each of these to the test data randomly to create realistic data that is completely fictional.

	Test Data Refresh

	Test Development
	Test Execution

	Test Monitoring
	Defect Management Responsibilities
	Test Status Meetings and Reporting
	Closure Evaluation Criteria

	Approach to Creating Test Environments
	Our Test Environment Management Plan
	Code Migration and Testing through Environments

	Additional Testing Responsibilities
	Appendix: PHE Testing Plan Presentation

